Structural basis for ineffective T-cell responses to MHC anchor residue-improved “heteroclitic” peptides
نویسندگان
چکیده
MHC anchor residue-modified "heteroclitic" peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild-type peptide. The best-studied system to date is the decamer MART-1/Melan-A26-35 peptide, EAAGIGILTV, where the natural alanine at position 2 has been modified to leucine to improve human leukocyte antigen (HLA)-A*0201 anchoring. The resulting ELAGIGILTV peptide has been used in many studies. We recently showed that T cells primed with the ELAGIGILTV peptide can fail to recognize the natural tumor-expressed peptide efficiently, thereby providing a potential molecular reason for why clinical trials of this peptide have been unsuccessful. Here, we solved the structure of a TCR in complex with HLA-A*0201-EAAGIGILTV peptide and compared it with its heteroclitic counterpart , HLA-A*0201-ELAGIGILTV. The data demonstrate that a suboptimal anchor residue at position 2 enables the TCR to "pull" the peptide away from the MHC binding groove, facilitating extra contacts with both the peptide and MHC surface. These data explain how a TCR can distinguish between two epitopes that differ by only a single MHC anchor residue and demonstrate how weak MHC anchoring can enable an induced-fit interaction with the TCR. Our findings constitute a novel demonstration of the extreme sensitivity of the TCR to minor alterations in peptide conformation.
منابع مشابه
Structural and functional correlates of enhanced antiviral immunity generated by heteroclitic CD8 T cell epitopes.
Peptides that bind poorly to MHC class I molecules often elicit low-functional avidity T cell responses. Peptide modification by altering the anchor residue facilitates increased binding affinity and may elicit T cells with increased functional avidity toward the native epitope ("heteroclitic"). This augmented MHC binding is likely to increase the half-life and surface density of the heteroclit...
متن کاملReal time detection of peptide–MHC dissociation reveals that improvement of primary MHC-binding residues can have a minimal, or no, effect on stability
The majority of known major histocompatibility complex class I (MHCI)-associated tumor-derived peptide antigens do not contain an optimal motif for MHCI binding. As a result, anchor residue-modified 'heteroclitic' peptides have been widely used in therapeutic cancer vaccination trials in order to enhance immune responsiveness. In general, the improved stability of these heteroclitic complexes h...
متن کاملModification of MHC anchor residues generates heteroclitic peptides that alter TCR binding and T cell recognition.
Improving T cell Ags by altering MHC anchor residues is a common strategy used to enhance peptide vaccines, but there has been little assessment of how such modifications affect TCR binding and T cell recognition. In this study, we use surface plasmon resonance and peptide-MHC tetramer binding at the cell surface to demonstrate that changes in primary peptide anchor residues can substantially a...
متن کاملInduction of cytotoxic T-cell responses against immunoglobulin V region-derived peptides modified at human leukocyte antigen-A2 binding residues.
Cytotoxic T-lymphocyte (CTL) responses can be generated against peptides derived from the immunoglobulin (Ig) V region in some but not all patients. The main reason for this appears to be the low peptide-binding affinity of Ig-derived peptides to major histocompatibility complex (MHC) class I molecules and their resulting low immunogenicity. This might be improved by conservative amino acid mod...
متن کاملPrevention of Cytotoxic T Cell Escape Using a Heteroclitic Subdominant Viral T Cell Determinant
High affinity antigen-specific T cells play a critical role during protective immune responses. Epitope enhancement can elicit more potent T cell responses and can subsequently lead to a stronger memory pool; however, the molecular basis of such enhancement is unclear. We used the consensus peptide-binding motif for the Major Histocompatibility Complex molecule H-2K(b) to design a heteroclitic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 45 شماره
صفحات -
تاریخ انتشار 2015